Package: SurvMA 1.6.8

Mengyu Li

SurvMA: Model Averaging Prediction of Personalized Survival Probabilities

Provide methods for model averaging prediction of personalized survival probabilities.

Authors:Mengyu Li [aut, cre], Jie Ding [aut], Xiaoguang Wang [aut]

SurvMA_1.6.8.tar.gz
SurvMA_1.6.8.zip(r-4.5)SurvMA_1.6.8.zip(r-4.4)SurvMA_1.6.8.zip(r-4.3)
SurvMA_1.6.8.tgz(r-4.4-any)SurvMA_1.6.8.tgz(r-4.3-any)
SurvMA_1.6.8.tar.gz(r-4.5-noble)SurvMA_1.6.8.tar.gz(r-4.4-noble)
SurvMA_1.6.8.tgz(r-4.4-emscripten)SurvMA_1.6.8.tgz(r-4.3-emscripten)
SurvMA.pdf |SurvMA.html
SurvMA/json (API)

# Install 'SurvMA' in R:
install.packages('SurvMA', repos = c('https://stat-wangxg.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/stat-wangxg/survma/issues

Datasets:
  • RealData.ROT - RealData.ROT: A simulated dataset based on a pre-specified time-varying coefficients Cox model.
  • SimData.APL - SimData.APL: A simulated dataset based on a pre-specified partly linear additive Cox model.
  • SimData.TVC - SimData.TVC: A simulated dataset based on a pre-specified time-varying coefficients Cox model.

On CRAN:

3.00 score 2 stars 463 downloads 2 exports 108 dependencies

Last updated 2 months agofrom:a6a6ac6991. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 23 2024
R-4.5-winOKNov 23 2024
R-4.5-linuxOKNov 23 2024
R-4.4-winOKNov 23 2024
R-4.4-macOKNov 23 2024
R-4.3-winOKNov 23 2024
R-4.3-macOKNov 23 2024

Exports:SurvMA.FitSurvMA.Predict

Dependencies:backportsbase64encbslibcachemcheckmatecliclustercmprskcodetoolscolorspacedata.tablediagramdigestdoParallelevaluatefansifarverfastmapfontawesomeforeachforeignFormulafsfuturefuture.applygenericsggplot2globalsgluegridExtragtablehighrHmischtmlTablehtmltoolshtmlwidgetsisobanditeratorsjquerylibjsonliteKernSmoothknitrlabelinglatticelavalifecyclelistenvmagrittrMASSMatrixMatrixModelsmaxLikmemoisemetsmgcvmimemiscToolsmultcompmunsellmvtnormnlmennetnumDerivparallellypecpillarpkgconfigplotrixpolsplineprodlimprogressrPublishquadprogquantregR6rangerrappdirsRColorBrewerRcppRcppArmadilloRcppEigenriskRegressionrlangrmarkdownrmsrpartrstudioapisandwichsassscalesshapeSparseMSQUAREMstringistringrsurvivalTH.datatibbletimeregtinytexutf8vctrsviridisviridisLitewithrxfunyamlzoo